Новости Ученые добились прекращения движения световых волн

NewsMaker

I'm just a script
Премиум
9,674
18
8 Ноя 2022
Новые методы воздействия на свет открывают путь к разработке продвинутых фотонных устройств.


m28ttvkbeof43c122datmpc115ibtjq6.jpg


Ученые из исследовательского института AMOLF совместно с Технологическим университетом Делфта достигли прорыва в управлении световыми волнами. Им удалось остановить движение световых волн путем изменения формы двумерного фотонного кристалла, в котором волны содержались. <span style="font-family: var(--ui-font-family-primary, var(--ui-font-family-helvetica));">Даже незначительные деформации кристалла могут существенно влиять на поведение фотонов в нем, подобно воздействию магнитного поля на электроны.</span>

Сделанное открытие предоставляет новые возможности для замедления световых полей и усиления их интенсивности, особенно важные для интеграции на микросхемы. Данная технология может найти применение во множестве областей, утверждает руководитель группы AMOLF Эвольд Верхаген.

sih2kjkadpku9trog41wtywcfg0f5dhl.png


В основе новой технологии лежит манипуляция световыми потоками на микроуровне, сходная с управлением движением электронов при помощи магнитных полей. Однако для фотонов, не имеющих заряда, процесс становится сложнее.

Исследователи группы фотонных сил AMOLF искали техники и материалы, позволяющие создавать для фотонов силы, аналогичные магнитным полям. Они вдохновились свойствами электронов в материалах вроде графена, где деформация кристаллической решетки ограничивает движение электронов и формирует энергетические уровни Ландау.

Сотрудничая с Кобусом Кейперсом из Технологического университета Делфта, ученые продемонстрировали аналогичный эффект для фотонов. Путем изменения регулярности расположения отверстий в слое кремния они смогли "заморозить" фотоны, заставив их останавливаться и не перемещаться через кристалл.

Принцип управления светом открывает новые возможности для микросхем. Варьируя узоры деформации, ученые даже смогли создать в одном материале различные типы эффективных магнитных полей. Исследование приближает возможность создания нанофотонных устройств, способных значительно усиливать свет, что крайне важно для эффективных лазеров или источников квантового света.

Результаты Для просмотра ссылки Войди или Зарегистрируйся в Nature Photonics 23 апреля. Независимо голландская команда получила аналогичные результаты команды из Университета штата Пенсильвания.
 
Источник новости
www.securitylab.ru

Похожие темы